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Abstract
We study the dynamics of a homopolar coherent array of fluxons in a planar
superlattice of long Josephson junctions coupled through lateral idle regions.
These regions introduce dispersion, which in effect destroys the Lorentz
invariance of the usual sine-Gordon equation. Thus, the system is described by
an effectively non-local equation. We use a collective coordinate approach to
determine the fluxon width resulting uniform coherent fluxon motion, as well as
the fluttering frequency as a function of the momentum, which is an integral of
the motion. At relatively high fluxon velocities Cherenkov radiation appears as
oscillations following the propagating fluxon. We obtained analytical formulae
for the wavevector, frequency, amplitude and form of the emitted radiation. The
analytical results are in fair agreement with numerical simulations. At very
high fluxon velocities, the radiation strongly modifies the I–v characteristics
leading to resonant structures, known as Cherenkov steps. The coherency of
the emitted radiation makes possible the use of such devices as rf oscillators
in the gigahertz region, where they can compete with semiconductor based
oscillators.

PACS numbers: 74.50.+r, 74.60.Jg

1. Introduction

One of the important characteristics of Josephson junctions is that when they are biased in a
zero field step (ZFS), an ac signal in the microwave range is obtained. The emitted power
is usually small unless phase locking of several junctions is achieved [1, 2]. In this case
the power due to radiation goes as the square of the number of junctions (N2), while the
linewidth decreases as 1/N . Therefore a great deal of effort has been devoted to demonstrate
experimentally the possibility of mutual synchronization in stacked junctions [3, 4] and in
arrays of short [5, 6] and long [2, 7–9] Josephson junctions.
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The geometry of a parallel array of coupled long junctions is of interest because
fluxon excitations in neighbouring junctions are attracted [8], so that coherent phase-locked
propagation of fluxons can be achieved. In a previous work, the static coherent fluxon solution
has been found analytically for a planar array of long junctions coupled through intermediate
regions where there is no Josephson and quasiparticle tunnelling (idle regions) [16]. These
regions can also be thought of as long columnar defects in a large area junction [9]. Devices
of this type can be easily fabricated with Nb electrodes, using photolithographic patterning
and deposition by thermal evaporation of SiO and lift off before depositing the top electrode
layer [9].

The idle regions severely affect the static as well as the dynamic behaviour of fluxons.
The fluxon’s width increases with increasing size of the idle regions, and therefore becomes
less effective in screening an external magnetic field [10]. In effect, the first critical field
Hc1 decreases with increasing idle regions, showing good agreement with the experiments
[11]. At the same time the idle regions introduce dispersion due to the curved paths of current
through the idle regions, thus the term non-locality. In effect the maximum fluxon velocity
increases with increasing idle regions, until it reaches a saturation velocity. For relatively
high velocities, we also have the possibility of Cherenkov radiation. This is important, since
through this mechanism we could get radiation of greater frequency which depends on the
driving current and can be continuously varied [12]. Evidence for Cherenkov radiation of
fluxons has been observed in stacks of annular junctions [13, 14], and in an intrinsic stack of
long Josephson junctions, i.e., a naturally layered high-Tc superconductor [15].

In this paper we study the dynamics of a coherent fluxon array using analytical and
numerical results. In section 2 we present the model of a periodic superlattice of Josephson
junctions in the limit of long narrow windows, while in section 3 we use a collective coordinate
ansatz to describe the dynamics of a coherent homopolar array of coupled fluxons. In
section 4 we discuss the problem of radiation, and in section 5 we present numerical results
showing Cherenkov steps on the first ZFS. We finish in section 6 with conclusions.

2. Model and equations of motion

We consider a planar parallel array of long Josephson junctions, which can be implemented
by periodic variation of the oxide width, d(x), in the x-direction [16]. Limiting ourselves to
d(x) � λL, where λL is London penetration depth, we can assume that there is no variation
of the magnetic thickness and therefore of the inductance along x. We consider that d(x) is
varied as

d(x) =
{

dj if |x − �n| <
w

2
n = 0,±1,±2, . . .

di otherwise
(1)

with di � dj , so that the critical Josephson current as well as the quasiparticle current
practically vanish in the idle region (where d(x) = di), since they are both exponentially
sensitive on d(x). Thus we end up with a periodic planar array of active (with tunnelling) and
passive (with no tunnelling) waveguides, shown schematically in figure 1. The strong variation
of d(x) influences strongly the local speed of electromagnetic waves, v. Since v ∝ d(x), and
di � dj , hence vi � vj , where vj and vi are the wave velocities in the active and idle regions,
respectively. For simplicity we can take vi → ∞. For the case of narrow junctions, the
electromagnetic properties of this system are well described by the following equation [16]:[

∂2
x + ∂2

z − w

v2
j

f (x)∂2
t

]
φ = w

λ2
j

f (x) sin φ (2)
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Figure 1. Schematic planar view of a Josephson junction superlattice.

where ∂x ≡ ∂
∂x

, etc, λj is the Josephson penetration depth in the junction and f (x) is the
structure function

f (x) =
∑

n

δ(x − xn) (3)

with xn = n�, n = 0,±1,±2, . . . . In equation (2) we have shrunk the junction windows to a
delta function, but we also scaled the critical current density by the junction width w, so that
the integrated current remains the same. We also assume that within the width w the phase φ

does not vary significantly, and we can define an average phase �n(z, t) of the nth junction as

�n(z, t) = 1

w

∫ w
2

− w
2

dx φ(x, z, t) (4)

and for small w we can also write

sin �n(z, t) = 1

w

∫ w
2

− w
2

dx sin φ(x, z, t). (5)

Equation (2) is linear everywhere except along the junctions, where the non-linearity comes
in. Thus using the Fourier transform of φ(x, z, t) as

φ(x, z, t) =
∫ ∞

−∞
dk φ̄(x, k, t) eikz (6)

where the bar distinguishes the Fourier transformed quantity, we can solve the corresponding
Laplace equations [16, 17] in the linear region. The arbitrary coefficients are determined
through the boundary conditions at the junction edges, as a function of the phases �n on the
junctions. Integrating equation (2) over x in the range

n� − w

2
� x � n� +

w

2
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and using the definitions given by equations (4) and (5), we get

∂xφ
∣∣n�+0
n�−0 − 1

v2
j

�n = 1

λ2
j

sin �n. (7)

The discontinuity in the derivative ∂xφ across x = n� can be evaluated through the boundary
conditions as a function of the phase �n and the phases of the neighbouring junctions, �n+1

and �n−1. Then, after extensive calculations we obtain a set of coupled non-local equations
[16], which can be represented in an operator form as

k̂

sinh �k̂
(�n+1 + �n−1) − 2

k̂

tanh �k̂
�n − w

v2
j

∂2
t �n = w

λ2
j

sin �n (8)

for n = 0,±1,±2, . . . . The operator k̂ ≡ i∂z can be defined by its Fourier transform

k̂�(k, t) = 1

2π

∫ ∞

−∞
dz e−ikz i∂z�n(z, t) = k�n(k, t). (9)

Using the Fourier transform of �n (equation (6)), we can rewrite equation (8) in integral form
as
w

λ2
j

sin �n(z, t) +
w

v2
j

∂2
t �n(z, t) = 2

π

∫ ∞

−∞
dζ ln

[
coth
( π

2�
|ζ − z|

)]
∂2
ζ �n(ζ, t)

+
π

4�2

∫ ∞

−∞
dζ sech2

[ π

2�
(ζ − z)

]
[�n+1(ζ, t) + �n−1(ζ, t) − 2�n(ζ )] (10)

so that the non-local character of the equations is more apparent than when these are expressed
with the pseudodifferential operators in equation (8). The non-locality is only in space since
the velocity of the waves in the idle region is infinite so that the variation of the phase in
the window is transferred instantly at every point in the idle region. Thus the only variation
with time in φ(x, z, t) in the idle region comes through the time variation of �n(z, t) in the
window. The non-locality in space means that the supercurrent at each point is not a local
property of the phase but depends on the current at any other point, which in fact can follow a
curved trajectory between the two points. Once the system of equations (8) is solved for the
phases �n(z, t), we can evaluate the phase φ(x, z, t) everywhere from [16]

φ(x, z, t) = sinh(k̂((n + 1)� − x))

sinh(k̂�)
�n(z, t) +

sinh(k̂(x − n�))

sinh(k̂�)
�n+1(z, t) (11)

for n� � x � (n + 1)�, n = 0,±1,±2, . . ., and from the definition (4) at x = n� and
x = (n + 1)� it is equal to �n(z, t) and �n+1(z, t), correspondingly.

A solution of particular interest is when we have coherent motion of fluxons, with
�n(z, t) = �(z, t) for all n. Then the function �(z, t) satisfies the non-local sine-Gordon
(sG) equation

w

v2
j

∂2
t � + 2k̂ tanh

�k̂

2
� = − w

λ2
j

sin � (12)

or in its integral form

w

v2
j

∂2
t �(z, t) − 2

π

∫ ∞

−∞
dζ ln

[
coth
( π

2�
|ζ − z|

)]
∂2
ζ �(ζ, t) = − w

λ2
j

sin �(z, t). (13)

In the limit of infinitely distant junctions (� → ∞), we get the sine-Hilbert equation [18, 19]
which admits an analytic solution of the travelling wave type. Similar kernels also arise in
non-local sG-type equations with a different physical mechanism as their origin [20–24].
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Equation (12) which describes the dynamics of coherent fluxons can be obtained as the
Euler–Lagrange (EL) equation from the action

S =
∫ ∞

−∞
dt L(t) (14)

where

L =
∫ ∞

−∞
dz

[
1

2

w

v2
j

(∂t�)2 − �k̂ tanh
�k̂

2
� − w

λ2
j

(1 − cos �)

]
(15)

is the Lagrange function of the system. In the next section we study the fluxon dynamics using
a variational (collective coordinate) approach.

3. Dynamics of Josephson vortices

In the spirit of the collective coordinate approach, we describe the fluxon form in terms of
two macroscopic parameters with physical significance, i.e. the fluxon position and the fluxon
width which can vary with time during the fluxon motion. Guided by the analytical solution in
the static limit of equation (12) [16, 18], we use as a trial function a time-dependent extension
of the static solution

�(z, t) = 4 arctan


sec

[
β(t)

2

]
sinh

[
β(t)

�
(z − Z(t))

]

+

√
sec2

[
β(t)

2

]
sinh2

[
β(t)

�
(z − Z(t))

]
+ 1


 (16)

where β(t) describes the internal dynamics of the fluxon width, while Z(t) characterizes the
centre of the fluxon motion. The partial differential equations that describe the dynamics are
transformed into ordinary differential equations for the collective coordinates β(t) and Z(t)

through the effective Lagrangian

L = T − U (17)

where (as shown in the appendix)

T = 1
2m(β)β̇2 + 1

2M(β)Ż2 (18)

is the effective kinetic energy and

U = 2w�

λ2
j

cot
β

2
+ 2π

∫ ∞

0
dk

sinh 2β

π
k

k cosh2 k
(19)

is the potential energy. The effective masses of internal motion, m(β), and fluxon position,
M(β), are a function of the width parameter β and are given by

m(β) = π2

3

w�

v2
j

[
1 +

(
1 + 2

β2

π2

)
β

sin β

]
1

β3
(20)

M(β) = 4
w

�v2
j

β

(
1 +

β

sin β

)
. (21)

The effective kinetic and potential energies are measured in units of �2
0

/
µ0dm, where �0 is the

flux quantum and dm � 2λL is the magnetic thickness so that L = µ0dm is the inductance per
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unit length (along z) of the junction. The effective kinetic energy of the system arises from the
displacement current, and the capacitance per unit length is included in the velocity vj . The
potential energy is the magnetic energy in the whole superlattice and the Josephson energy in
the windows. Since from the definition (16), β(t) is dimensionless while Z(t) has units of
length, m(β) is in units of time squared and M(β) is in units of inverse squared velocity.

Looking at the Lagrangian we see that Z is a cyclic coordinate, which means that the
corresponding generalized momentum is conserved. The EL equations for the coordinates
q = β or Z are obtained from

d

dt

∂L
∂q̇

= ∂L
∂q

. (22)

Then for q = Z we get that the generalized momentum

P = ∂L/∂Ż = M(β)Ż (23)

is a constant, with M(β) given by equation (21). Thus we can eliminate Ż from L in favour
of P and obtain a new effective Lagrangian

Leff = L − PŻ = 1

2
m(β)β̇2 − U − P 2

2

v2
j � sin β

4wβ(β + sin β)
= 1

2
m(β)β̇2 − Ueff (24)

where the effective potential

Ueff = U +
�P 2

8wβ

v2
j sin β

(β + sin β)
(25)

takes into account the coupling between the internal motion and the centre of fluxon motion
expressed by equation (23).

The minimum of the effective potential, Ueff , with P �= 0, corresponds to a uniformly
moving fluxon with constant width and velocity. The fluxon width �/β depends on the
momentum P and its value is obtained from the position of the minimum of Ueff , which is
determined by the equation (see the appendix)

2β tan

(
β

2

)
− P 2c2

8

sin2 β + 2β sin β − β2 cos β

β2(β + sin β)2
sin2 β

2
= ν (26)

where c = vj

√
�
w

is the velocity of linear waves in the structure, and ν = w�

λ2
j

is the non-locality

parameter. Note that for P = 0 equation (26) reduces to

2βs tan

(
βs

2

)
= w� ≡ ν (27)

which determines the width of a static fluxon. A reasonably good approximation for βs(w, �)

is given by the simple interpolation formula [16]

βs = π√
1 + π2

w�

(28)

which, for ν = w� � 1, gives β � √
w�.

In the interval β ∈ [0, π] equation (26) has only one solution for any value of P and ν.
But the velocity v = Ż of the uniform fluxon motion given by the expression

v(β) = c cos

(
β

2

)√
2

2β tan
(

β

2

)− ν

sin2 β + 2β sin β − β2 cos β
(29)

is a non-monotonic function of β with a maximum in the interval [βs, π] where βs is the
solution of equation (26) in the case of an immobile fluxon (P = 0). The shape of v(β) is
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Figure 2. (a) The shape of the fluxon velocity v versus β for w = 0.1 and � = 0.5 (dashed curve),
� = 1.0 (long-dashed curve), � = 2.0 (solid curve). The stable part in all cases is to the left of the
maximum velocity. (b) The fluxon velocity v versus the momentum P for w and � as in (a).

shown in figure 2(a) for w = 0.1 and � = 0.5, 1.0, 2.0. We see that v starts increasing from
zero at βs on the left, reaches a maximum velocity vm, and then decreases to zero again at
β = π . However, only the parts of the curves to the left of vm correspond to a stable fluxon.
Thus, we also find here a limiting velocity, which limits the applicability of the collective
coordinate approach. In all cases vm is less than the effective velocity c, which is an increasing
function of the idle region width �. It is however larger than vj due to the fact that the tail
of the fluxon hanging into the idle region tends to travel at higher velocities, and the critical
velocity for linear waves in this compound superlattice is c.

The position of the maximum velocity, βm, and its value, vm, depend on the non-locality
parameter ν. It is seen from equations (26) and (29) that the fluxon velocity is also a non-
monotonic function of P (see figure 2(b)), i.e. v(P ) is double valued. We should notice here
the peculiar situation that as the fluxon momentum increases, its velocity decreases to the right
of the maximum. This is because M(β) increases linearly with β for v < vm while for v > vm

it increases as a higher power of β.
In figure 3(a) we plot β (actually its equilibrium value, βp) as a function of P. The β(P )

curve starts from the static value, βs, defined by equation (27) and rises almost quadratically
up to the point where the velocity reaches a maximum. After that it increases more slowly
until it levels at β = π . The range of stable solutions corresponds, however, to values of β

far from π . In fact the arrows show the maximum value for each �. In the limit of small
non-locality (ν � 1), we obtain from equation (29) that the maximum velocity vm, its position
βm and the corresponding momentum Pm are given by

β2
m �

√
12ν vm � c Pm � 8βm

c
→
√

w

�

(�w)1/4

vj

. (30)

In figure 3(b) we see that the simple formula (30) for βm(�) is a good approximation over a
large range of �.

When the momentum P and/or the non-locality parameter ν become large, the solution
of equation (26) takes the form

β = π − 4π

�

(
w

λ2
j

+
P 2v2

j

8π2w

)−1

(31)
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Figure 3. (a) The equilibrium value for β (i.e. βp) versus the momentum P for w and � as in
figure 2. The stable range is to the left of the arrows. (b) The value of β where the velocity v is
maximum, βm, versus the idle region width �, for w = 0.1, calclulated from equation (29) (solid
curve), along with the approximate formula β2

m � √
12ν (dotted curve).

and the dependence of the fluxon velocity on the momentum can be written as

v(P ) = 8π
Pv2

j λ
2
j

8π2w2 + P 2v2
j λ

2
j

. (32)

The function in equation (32) has a maximum at P = 2π
√

2 w
λjvj

with a maximum velocity

vm = √
2 vj λj

w
.

Thus the momentum is the important parameter. For a fixed value of P, we can
determine the corresponding value of β from equation (26). Then using either equation (29)
or equation (23), we can determine the fluxon velocity. This prescription gives a single
valued behaviour for both the fluxon width (�/β) and the velocity (Ż) as a function of the
momentum P.

When the width of the fluxon at t = 0 is not the one obtained from the minimum of
Ueff (β(t = 0) �= βp), its dynamics will be described by the corresponding EL equation for β

1

2
m′(β)β̇2 + m(β)β̈ = −∂Ueff

∂β
(33)

where m′(β) = ∂m
∂β

. This equation describes the fluttering phenomena around a moving fluxon.
Rearranging the various terms in equation (33), we get

β̈ = −1

2
c(β)β̇2 − 1

m(β)

∂Ueff

∂β
(34)

where c(β) = m′(β)/m(β), and the explicit expressions for m′(β) and c(β) are given in the
appendix.

A question that arises is how the static fluxon evolves if it has a width different from
its static value βs and second whether for β values different from βs, the analytic expression
given in equation (16) as a function of β is still a good approximation when β is close to
βs. The answer to the second question is also useful when we want to take into account the
effect of velocity on the fluxon width in the case of a fluxon with finite momentum. So we
consider small deviations of β from the equilibrium value βp and examine its time evolution.
The particle corresponding to the effective mass m(β) with β = βp is still inside a well which
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Figure 4. The fluttering frequency ωfl: (a) versus β = βp and (b) versus the momentum P, for w

and � as in figure 2. In (a) the stable range is to the left of the arrows.

however is very steep on one side but for small deviations is harmonic. Then it can be shown
that the width oscillates around βp with a frequency given by

ωfl =
√

U ′′
eff(βp)

m(βp)
(35)

where U ′′(βp) is the second derivative of the effective potential in equation (25) with β

evaluated at its equilibrium point βp. The frequency ωfl is called the fluttering frequency and
as a result of this the fluxons have an oscillating width so that they have a breathing-like mode.

In the case P = 0 the fluttering frequency is determined by the expression

ω2
fl = 1

m(βs)

d2U

dβ2

∣∣∣∣
βs

= 12

π2ν

1

sin βs

β3
s (βs + sin βs)

sin βs +
(
1 + 2 β2

s
π2

)
βs

(36)

where βs is the solution of equation (26) at P = 0. In the limit of small � (and β), we can
obtain

ω2
fl � 12

π2
as ν → 0 (37)

while in the other extreme

ω2
fl � 1

w2
as ν → ∞. (38)

In figure 4(a) we plot ωfl as a function of βp while in figure 4(b) we plot wfl as a function
of the momentum P. We see that at P = 0 or β = βs, ωfl � 1.1 (independent of � for
small ν), which is very close to the value predicted by equation (37). In fact this value has
also been verified in the simulations for a static fluxon by choosing an initial value for β

slightly different from βs. The simple result in equation (37) is a good approximation even
for higher v values. This can be understood since in a large range of interest, β � π and
therefore corrections are in powers of β/π . The useful range of the plot is again indicated
by arrows for figure 4(a), while in figure 4(b) the useful range is in the corner for P � 2.
In figures 5(a) and (b) we show the effective masses m(β) and M(β) as a function of the
fluxon momentum, P. We see that for small momentum m is a strongly decreasing function
of momentum. It starts from 3π2

2 βs and for P � 2, it is comparable to M(P). This means
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Figure 5. The effective masses (a) m(β) and (b) M(β) versus the fluxon momentum P, with w

and � as in figure 2.

that at low translational momentum, it is very difficult to excite width oscillations, while for
larger values of momentum both degrees of freedom are important. Near P � 0 the mass
m(β) behaves as

m(β) � m0

√
1 −
(

P

M0c

)2

where m0 = m(βs). In contrast M(P) is an increasing function of momentum. At P = 0 and
β = βs, we have

M(β) � 8w

�v2
j

√
ν = 0.264√

�

for w = 0.1 which is a reasonable approximation for small ν. For small P one can see that

M � M0

√√√√ 1

1 − ( P
M0c

)2
where M0 is the effective mass at P = 0. Since M0 ∼ 1√

�
and c ∼ √

� the curvature near
P = 0 is decreasing with increasing �, the size of the idle region.

4. Cherenkov radiation of Josephson fluxons

The usual sG equation is Lorentz invariant and fluxons can move without changing their shape
and velocity. This is not the case for the non-local sG equation, where dispersion is introduced
by the spatial non-locality. In this case fast moving fluxons can excite waves in the form
of Cherenkov radiation [12]. To see this we consider propagating solutions and introduce a
transformation to a frame of reference in which the centre of the fluxon is at rest [25]

ζ = (z − vt)γ (v) τ =
(
t − v

c2
z
)

γ (v) γ (v) = 1√
1 − v2

c2

(39)

where v is the velocity of the fluxon. Applying this transformation to equation (12) we obtain
for the phase �(ζ, τ )
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γ 2 �

c2

(
v2∂2

ζ − 2v∂ζ ∂τ + ∂2
τ

)
�(ζ, τ ) + 2γ κ̂(v) tanh

(
κ̂(v)γ �

2

)
�(ζ, τ ) = w

λ2
j

sin �(ζ, τ )

(40)

where the notation

κ̂(v) =
√

−∂2
ζ + 2

v

c2
∂ζ ∂τ − v2

c4
∂2
τ (41)

was used. We introduce perturbations around the stationary solution �(ζ ) from equation (12)
in the form

�(ζ, τ ) = �(ζ ) + f (ζ, τ ) (42)

where f (ζ, τ ) describes the change of the shape of the soliton and the radiation. Inserting
equation (42) into equation (40) in the linear approximation for f (ζ, τ ) and using the Fourier
transform of f (ζ, τ )

f̄ (k, τ ) = 1

2π

∫ ∞

−∞
dζ e−ikζ f (ζ, τ ) (43)

we obtain the linearized inhomogeneous differential equation

γ 2 �

c2

(−2iv k∂τ + ∂2
τ

)
f̄ +

�

c2
�2(k, v)f̄ + 2γ

[
k̂(v) tanh

(
γ k̂(v)�

2

)
− k tanh

(
γ k�

2

)]
f̄

− w

λ2
j

(1 − cos �)f= − 2i

[
γ 2v2k�

2c2
− γ tanh

(
γ k�

2

)
+ tanh

(
k�

2

)]
(∂ζ �)(k)

(44)

where the operator k̂(v) is the extension of the operator k̂ due to Lorentz transformation,

k̂(v) =
√

k2 + i2
vk

v2
j

∂τ − v2

v4
j

∂2
τ (45)

that acts on the ζ -Fourier transform of f (ζ, τ ), and the function

�(k, v) =
√√√√v2

j

λ2
j

[
1 +

2λ2
j

w
kγ tanh

(
kγ �

2

)]
− γ 2k2v2 (46)

is the Swihart dispersion relation in the moving frame of reference. The left-hand side of
equation (44) is the source of the radiation, which vanishes when v = 0. The equation
�(k, v) = 0 has two real roots at k = ±kr , which means that waves with wavenumbers ±kr

will be resonantly excited by a moving fluxon, forming an oscillatory tail [17, 27, 26]. For
small fluxon velocities v2 � c2, or equivalently (�/w) � (v2

/
v2

j

)
, the resonant wavenumber

kr and the corresponding frequency ω(kr ) can be expressed as

kr � 2v2
j

wv2
(47)

ω(kr) = krv � 2v2
j

wv
. (48)

In the resonant region k � ±kr , we can neglect the second derivative ∂2
τ f because, as will be

seen later, the function f changes slowly in the interval 1/ω(kr):

|2ω(kr)∂τf | � ∣∣∂2
τ f
∣∣ . (49)
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We use the expansion of ω(k, v) around k = ±kr

�2(k, v) � ∓2vkr(v − ∂kω(kr ))(k ∓ kr) � v2kr(k ∓ kr) (50)

and replace the right-hand side of equation (44) with its value at k = kr . We also represent
the function f̄ (k, τ ) as a sum

f̄ = f̄ + + f̄ − (51)

where the function f̄ + (f̄ −) differs from zero only in the close vicinity of the wave vector
kr (−kr). Taking into account equations (49)–(51), we obtain from equation (44) that the
functions f̄ ± satisfy the equation

ia∂τ f̄ ± +
v

2
(k ∓ kr)f̄ ± ± vw

4λ2
j

(1 − cos �)f± = πva
cosh

(
kr�
2

)
cosh

(
πkr�

2β

) (52)

where the coefficient a is given by the expression

a = 1 − 1

kr�

[
tanh

(
kr�

2

)
+

kr�

2
sech2

(
kr�

2

)]
. (53)

By virtue of equations (47) and (48) the second term on the right-hand side of equation (53)
is small, thus we can put a = 1. Thus, returning to the real space (ζ, τ ) we obtain from
equation (52)

∂τf± − v

2
∂ζ f± ∓ v

2

(
kr +

w

2λ2
(1 − cos �)

)
f± = πv

cosh
(

kr �

2

)
cosh

(
πkr�
2β

)δ(ζ ). (54)

With the initial condition f (ζ, τ )|τ=0 = 0, the solution of equation (54) becomes

f = A
[
θ
(
ζ +

v

2
τ
)

− θ(ζ )
]

cos[krζ + χ(ζ )] (55)

where the function

A = 4π
cosh

(
kr�

2

)
cosh

(
πkr�
2β

) (56)

is the amplitude of the radiation. The phase function χ(ζ ) has the form

χ(ζ ) = w

2λ2

∫ ζ

0
dζ(1 − cos �) = 2 arctan

(
tanh

(
ζ

2

)
tan

(
β

2

))
. (57)

It is seen that |krζ | � χ(ζ ) when |ζ | > 1. Therefore we can neglect the phase function χ(ζ )

and returning to the original variables (z, t), we obtain that the radiation of the fluxon which
moves with a velocity v is given by the function

f (z, t) = A
[
θ
(
z − v

2
t
)

− θ(z − vt)
]

cos(krz − ω(kr)t). (58)

Thus, a moving fluxon stimulates radiation in the rear with a wavelength λ = 2π
kr

∼ v2. When

the idle region is not wide,
√

w� � λj , while at the same time � � w, we obtain from
equations (27) and (56) that the amplitude of the radiation can be expressed as

A(ν � λj ) = 4π exp

{
−π

v2
j

v2

wf

w

}
(59)

where wf =
√

�
w
λj is the fluxon width in the case of small non-locality. We see that the

radiation increases when the fluxon width decreases. When the idle regions become very large
(� → ∞), the amplitude of the radiation takes the form

A(� → ∞) = 4π exp

{
−4

v2
j

v2

λ2
j

w2

}
. (60)

In both cases the amplitude of the radiation decreases exponentially with decreasing fluxon
velocity.
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Figure 6. The propagating fluxon with the initial condition included as a dotted curve, and its
corresponding Fourier spectrum in the inset (a) for w = 0.1, � = 1.0, L = 80 and v = 2.5 and
(b) for w = 0.2, � = 1.0, L = 80 and v = 1.6.

5. Numerical results: radiation and Cherenkov steps

We solve equation (12) with periodic boundary conditions in the z-direction. The initial
condition for the phases � is that obtained by the collective coordinate approach, with β

calculated from equation (26). Assume that we have a travelling wave, �t(z, t = 0) =
−v�z(z, t = 0), with v taken from equation (29). For low velocity (v � 1.6) there is no
radiation, and the coherent fluxons propagate in the junction for long time intervals without
changing their shapes. Thus, the collective coordinate approach gives excellent results in this
regime.

In figure 6(a) the propagating fluxon followed by radiation is shown for v = 2.5 (in units
of vj ). The Fourier spectrum (the absolute value of the Fourier transform) of the waveform
is shown in the inset of figure 6(a), where a peak due to the emitted radiation is evident, at
k = kr � 2.9. In figure 6(b) we see another waveform and its Fourier spectrum (inset), for
w = 0.2 and v = 1.6, while the other parameters remain the same as in figure 6(a). Notice
that we increased the window width w from 0.1 to 0.2 in order to get stronger Cherenkov
radiation. Indeed, we get stronger radiation in this case, as indicated by comparison of the
peak values of figures 6(a) and (b), even though the fluxon motion is slower.

Even though the velocity v in both cases gets close to the corresponding vm (vm � 1.95
and vm � 2.80 for figures 6(a) and (b), respectively) and appreciable radiation appears in the
tails, the collective coordinates result (shown as dashed lines) still gives the correct trend for
the fluxon profile.

For velocities very close to or higher than vm, however, the collective coordinate approach
cannot be applied. Furthermore, the squared velocity becomes comparable with c2 = �/w,
and therefore the approximate analytical formulae for the radiation are not valid. In this
regime, one has to resort to numerical simulations.

In order to make a connection with real Josephson junction arrays, we also included
damping in the windows and driving current, which enters the junction from the end lines in
the x-direction and is uniform in the z-direction (see figure 1). The equations for two junctions
are obtained following the procedure of section 2, after adding a term of the form −γf (x)∂tφ

on the right-hand side of equation (2), with the modified boundary conditions

φx(x = ±(n� + �/2)) = ∓I/2. (61)
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Figure 7. I–v characteristics for two coupled junctions with overlap current feed (a) for
w = 0.2, � = 1.0, L = 40 and γ = 0.05 and (b) for w = 0.2, � = 1.0, L = 80 and γ = 0.05.

Then, considering only two junctions, we get (note that �′ = �/2)

∂tt �̄1 = − k

w

[
tanh

(
k�

2

)
+

1

tanh(k�)

]
�̄1 +

k

w sinh(k�)
�̄2

− I

2w cosh
(

k�
2

) − sin �1 − γ ∂t�̄1 (62)

where γ is the damping coefficient. The corresponding equation for �2 is obtained by
interchanging �1 and �2 in equation (62). Solving the coupled system of two equations for
�1 and �2, the phases in windows 1 and 2, respectively, we confirm that the coherent solution
is indeed stable. Inspection of the phases �1 and �2 shows that they are identical for any
value of the driving current. The current–velocity (I–v) characteristics for the two coupled
junctions biased on the first zero field step (ZFS) are shown in figure 7, where the current
density per junction is I/2w. Notice that the fluxon velocity v is plotted on the horizontal
axis, instead of the voltage V = 2π

L
v. The length of the junction L = 40 in figure 7(a),

while L = 80 in figure 7(b), and the other parameters remain the same. At low velocities
(v � 1.25) the I–v characteristics are linear and their slope is proportional to the damping
coefficient γ . At higher velocities, however, the I–v characteristics acquire some curvature,
and for v � 1.75 fine structure in the form of substeps appears. These substeps are resonances
due to strong interaction of the moving fluxons and the Cherenkov radiation, and usually they
are referred to as Cherenkov steps.

Thus, if the junctions are biased on a Cherenkov step, one can increase the power of
the emitted radiation while the radiation frequency remains constant by simply increasing the
current within the range of the step. Similar resonances have been observed experimentally in
a single window junction with lateral idle region [2], as well as in two long junctions in a stack
[13, 14]. The resonances are much stronger for the shorter junction (figure 7(a)), where the
Cherenkov steps are steeper, compared to those in figure 7(b). This is because in the shorter
junction the radiation interference is much stronger with the fluxon and with itself, since it
fills the whole junction. The resonance condition is imposed by the periodic geometry, that
is, from the requirement that in a junction of length L, only an integer number of wavelengths
are allowed, so that the wavevectors of the emitted radiation are given by kr = 2π

L
m, where m

is an integer. This also explains why the resonances are closely spaced together in the case of
the longer junction. Obviously, the resonant k are twice as many as before, since the length L



Fluxons in a superlattice of Josephson junctions: dynamics and radiation 2437

0 1 2 3 4 5
k

0

1

2

3
ra

di
at

io
n 

sp
ec

tr
a

(a)

1.35 1.55 1.75
v

0

0.5

1

1.5

ra
di

at
io

n 
pe

ak
s 

(b)

Figure 8. (a) The radiation spectra for several average velocities of the fluxon, for w =
0.2, � = 1.0, L = 120 and γ = 0.1. (b) The peak values of the spectra (squares) at k = kr

for w = 0.2, � = 1.0, L = 120 and γ = 0.1, along with the theoretical values obtained as
described in the text (solid curve). The dotted curve is a guide to the eye.

of the array has been doubled. Note also that in both cases the fluxons become unstable before
reaching the maximum theoretical velocity, c � 2.24, due to the resonant structure of the I–v

curves.
In figure 8(a) the Fourier spectra of the radiation are shown, which are obtained by solving

the coupled equations for two junctions, for several fluxon velocities v. In the driven and
damped case, the fluxon velocity is determined by the external bias current. After taking the
Fourier spectrum of the whole waveform, we have removed the Fourier spectrum of the fluxon,
using the corresponding collective coordinate solution for each v. The maxima of these curves,
which are related to the radiation amplitude, vary exponentially with −1/v2, according to
equation (56). For the parameters used in this figure (L = 120, � = 1.0, w = 0.2, γ = 0.05),
the radiation gets damped by the time the fluxon makes the next round, and therefore the
radiation cannot fill the whole junction. Thus, interference effects of the radiation with itself
are absent.

In figure 8(b) we compare indirectly the radiation amplitudes obtained by numerical
simulations and the theoretical formula. We assume that at some time t we have an integer
number of periods for the radiation in the length L of the junction, in accordance with
equation (58). Differentiating with respect to z we get fz = −krA sin kr(z − vt). Before
taking the Fourier spectrum of fz, we convolute this function with the exponential e−z/δ , in
order to take into account the decrease of the radiation behind the fluxon due to damping.
The characteristic distance δ depends on the fluxon velocity. A reasonable estimation for δ

is δ = v2/2γ , which gives, for the range of velocities of interest, δ � 9–16. The peaks of
the Fourier spectra at k = kr are plotted versus the velocity v (solid curve) along with the
numerically obtained ones (points connected with a dotted curve). We see that a fair agreement
is obtained at low velocities.

In figure 9(a) we see that the points (kr, ω), where kr is the wavenumber of the emitted
radiation (numerically determined from the peak of the spectra) and ω = vkr , fall very close
to the analytic dispersion

ω(k, q) = vj

λj

√
1 +

2λ2
j

w

k

sinh k�
[cosh(k�) − cos(q�)] (63)
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Figure 9. (a) The frequency of the emitted radiation ω = vkr versus kr for w = 0.2, � = 1.0, L =
40, γ = 0.05 (diamonds) and γ = 0.075 (circles), along with the analytic dispersion. (b) The
wavenumber kr versus 1/v2 for w = 0.2, � = 1.0, γ = 0.05 and L = 40 (diamonds), L = 80
(circles) and L = 120 (triangles). The dotted line is the theoretical prediction kr � 2v2

j /wv2.

where k and q are the longitudinal and transversal wavevectors, respectively (q = 0 for the
lowest mode). We also see that the radiation frequency is independent of the damping, while in
figure 9(b) we verify that kr ∼ 1/v2 for three different junction lengths L. It turns out that kr is
also independent of the damping, that is, it depends only on the velocity v. For high velocities
the overlapping same symbols come from resonant branches where the fluxon velocity is
nearly constant but the current may vary significantly, without affecting the wavevector or the
frequency of the emitted radiation.

6. Conclusions

We considered a planar superlattice of Josephson junctions coupled through intermediate
linear (idle) regions, and we obtained the effectively non-local sG equations which describe
the dynamics of that system. In the limit of very large idle regions (� → ∞), we obtained
the sine-Hilbert approximation with a long-range kernel. We studied the physically relevant
solution of a coherent homopolar fluxon array. We applied the collective coordinate approach
in order to obtain approximate analytic dynamic solutions in this case, which are valid up
to a parameter-dependent velocity, vm. The relevant parameters of the trial function, β

and Ż, are the inverse width and the fluxon position, respectively, which are constants at
low velocities, resulting in uniform fluxon motion. They are determined by minimizing the
effective potential Ueff , which includes the magnetic energy along with the Josephson energy
and the fluxon kinetic energy. From the analysis we see that the fluxon momentum P is the
important parameter, since it is an integral of the motion. Thus, the correct prescription is to
choose a value of P and determine the corresponding width and velocity from equations (26)
and (29). There is fair agreement between the collective coordinate solutions and those
obtained from direct numerical simulations using the non-local sG equation. The analysis was
greatly facilitated by knowledge of the static solution of the non-local sG equation [16].

Well before the critical velocity vm is reached, the Cherenkov radiation excited by the
moving fluxons becomes significant. The emitted radiation appears as oscillations following
the fluxon. We obtained analytical results for the wavevector, frequency, amplitude and the
form of the emitted radiation, which also agree with the numerics, when v2

c2 � 1. Surprisingly,
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the collective coordinate solutions still give the correct trend as is also seen in numerical
simulations. When the radiation is significant, the width of the junction will also be affected,
starting to vary with time. In this case we also have the excitation of the fluttering mode which
interferes with the radiation itself. The fluttering frequency ωfl, obtained from numerical
simulations also compares very well with the analytical result. At high velocities, one has to
resort to numerical studies.

At low velocities the I–v characteristics do not depend on the junction length L. For short
enough junctions, however, the radiation interferes much strongly with the fluxon and with
itself since it covers the whole junction. Therefore, the Cherenkov steps seen at high velocities
are steeper for the short junction.

At low velocities in the driven and damped case, the current is proportional to the fluxon
velocity but also depends on the inverse width of the fluxon. Thus, even at low velocities
the current depends on β/�. For large ν values this can be a significant change over local
models. Of course one could not explain the Cherenkov resonances at higher velocities within
a local model. This possibility is very promising for the generation of coherent radiation with
significant power output that will increase as the square of the number of junctions, N2.
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Appendix

From equation (20), after some simple algebra we get that

m′(β) = −π2w�

3

(
3

β4
+

2

β3 sin β

)
− w�

3

(
2

β sin β
+

(
2 +

π2

β2

)
cos β

sin2 β

)
. (A1)

Then for the coefficient c(β) = m′(β)/m(β), we get

c(β) = − 3

β
+

[(
1 +

6β2

π2

)
−
(

1 +
2β2

π2

)
β cos β

sin β

] [
sin β +

(
1 +

2β2

π2

)
β

]−1

. (A2)

In the small β limit we can approximate sin β � β and cos β � 1 + β2/2, so that if we keep
terms up to the first power in β we have

c(β) � − 3

β
+ c0β (A3)

with the constant

c0 = 1

2

(
4

π2
+

1

3

)
. (A4)

In the same way for the effective mass we get

m(β) � 2π2

3

[
1

β
+

1

2

(
1

6
+

2

π2

)
β

]
(A5)

where we also used β = √
w� in equation (20).

The first derivative of the potential U(β) for the static case can be obtained from
equation (25) as

U ′(β) = ∂U

∂β
= 4β

sin β
− w�

sin2
(

β

2

) (A6)



2440 Y Gaididei et al

while its second derivative is

U ′′(β) = ∂2U

∂β2
= 4

sin β − β cos β

sin2 β
+

w� cos
(

β

2

)
sin3
(

β

2

) (A7)

and their approximations for small β are

U ′(β) � 1
3β2 (A8)

U ′′(β) � 8

β
− 8β

3
(A9)

where we kept terms up to β2 in U ′
eff(β) and used w� � β for small �.

For the moving fluxon and finite β, we must use the Taylor expansion for Ueff around
β = βp. For β = βp + δ, with δ a small perturbation (δ � βp), we expand the effective
potential around βp (the minimum):

Ueff(β) � Ueff(βp) + δ
∂Ueff

∂β

∣∣∣∣
β=βp

+
1

2
δ2 ∂2Ueff

∂β2

∣∣∣∣
β=βp

+ · · ·

where Ueff is given by equation (25) and its derivatives are

U ′
eff = 4β

sin β
− w�

λ2
j

1

sin2
(

β

2

) − B2

2

{
1

β2
− 1 + cos β

(β + sin β)2

}
(A10)

U ′′
eff = 4

sin β − β cos β

sin2 β
+

w�

λ2
j

cos
(

β

2

)
sin3
(

β

2

) − B2

2

{
− 2

β3
+

sin β

(β + sin β)2
+ 2

(1 + cos β)2

(β + sin β)3

}
(A11)

where we added to equations (A6) and (A7) the contributions from the translational energy of
the fluxon, and B2 is given by

B2 = 4ν2

c2
β2

(
1 +

β

sin β

)2

≡ P 2�

4w
v2

j = P 2c2

4
. (A12)

At β = βp the potential has a minimum, thus ∂Ueff
∂β

∣∣
β=βp

= 0 and Ueff (βp) = 0. Thus the first

non-zero term is Ueff = 1
2δ2U ′′ (βp), consequently

∂Ueff

∂β
� δU ′′(βp) = U ′′(βp)(β − βp)

. The differential equation for β becomes

β̈ = −1

2

3

β
β̇2 − U ′′(βp)

m(β)
(β − βp)

where we omitted the higher order term cββ̇2. For the effective mass m(β), we used only the
first term in equation (20), i.e. m(β) � 2π2/3β.

Introducing the small quantity δ = β − βp, we can write the equation of motion as

δ̈ = −1

2

3

βp

(
1 − δ

βp

)
δ̇2 −

(
U ′′(βp)

m(βp)

)
δ.

Dividing this equation by βp we get

δ̈

βp

= −3

2

δ̇

βp

2 (
1 − δ

βp

)
−
(

U ′′(βp)

m(βp)

)
δ

βp

. (A13)
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By defining the quantity

� = δ

βp

� 1

we can rewrite equation (A13) as

�̈ = −3

2
�̇2(1 − �) −

(
U ′′(βp)

m(βp)

)
�. (A14)

Since � � 1, we also have �̇ � 1, �̈ � 1, and keeping terms up to O(�) we get the
harmonic oscillator equation

�̈ = −ω2
fl�

where

ωfl =
√

U ′′(βp)

m(βp)
(A15)

is the so-called fluttering frequency. As a result of this frequency the fluxons have an oscillating
width so that they have a breathing-like mode.

If the deviation is large, we must solve numerically for β(t).
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